Urodynamics is the study of lower urinary tract function and how this relates to a patient’s urinary symptoms. The aim is to reproduce the patient’s lower urinary tract symptoms to provide a pathophysiological explanation and to guide treatment. This article, and the accompanying patient information, focus particularly on invasive urodynamic studies.

Keywords: urinary incontinence; urodynamics

Types of urodynamic studies

- Noninvasive urodynamic assessment includes free uroflowmetry (measurement of urinary flow rate without catheterisation) and measurement of postvoid residual volume. These are performed before invasive urodynamic studies.
- Invasive urodynamic studies (involving catheterisation) include filling cystometry and pressure flow studies.
- Invasive urodynamic studies combined with imaging:
 - Fluoroscopic urodynamic studies (also known as videourodynamic) are performed on a tilt table with an image intensifier while the bladder is filled using radio-opaque contrast to allow anatomical definition. This is particularly useful in assessing bladder outlet obstruction, patients with neurological disorders and postoperative complications.
 - Ultrasound: transabdominal or transvaginal ultrasound can assist prolapse assessment and bladder neck hypermobility in women.
- Ambulatory urodyamics – uses air rather than fluid filled catheters, utilises natural bladder filling and allows freedom of patient movement. This technique is only available in some academic centres.

When are urodynamic studies useful?

Urodynamic studies must be preceded by a full clinical assessment and basic investigations – urodynamics are NOT part of the initial assessment. Table 1 highlights the key assessments required before urodynamic studies are considered.

Noninvasive uroflowmetry is commonly used but only selected patients with lower urinary tract...
symptoms require invasive urodynamic studies. Invasive urodynamics are NOT indicated if the result is unlikely to change initial management. This includes common situations such as:
• conservative management of stress incontinence or the overactive bladder
• medical management of obstructive voiding symptoms in men
• medical management of overactive bladder symptoms.

Indications for invasive urodynamics

- Unclear diagnosis
- Invasive surgical interventions are being considered, as choice of procedure is influenced by urodynamic results
- Coexisting pathologies to determine which should be treated first, such as obstruction and detrusor overactivity or stress incontinence and detrusor overactivity
- Complex problems such as recurrent incontinence, neurological pathology, previous lower urinary tract surgery, pelvic surgery or pelvic radiation.

Contraindications

- Inability to comply with instructions and provide feedback on bladder sensation, eg. in severe cognitive impairment
- Inability to catheterise the bladder, eg. urethral stricture disease
- Concurrent urinary tract infection
- If urodynamic study is unlikely to change decision making, patient management or treatment outcome.

Precautions

- Urodynamic testing is generally very safe, as it is minimally invasive and performed on an awake patient
- There is a low incidence of urinary tract infection after urodynamic studies (1–2%) especially with the use of prophylactic antibiotics
- Renal impairment is not a contraindication but severe contrast allergy prohibits the use of intravesical contrast during fluoroscopic urodynamic studies
- As urodynamics are interpreted in the context of an individual’s symptoms, the clinician performing the test should be fully conversant with the patient’s problems

- Urodynamic studies provide a ‘snapshot’ of the bladder’s dynamic function, hence abnormalities may occasionally be missed
- Technical artefacts are common and should be accommodated in interpretation
- The results must be interpreted with caution if the study does not reproduce the patient’s symptoms or the patient is unable to void during the study. A ‘bashful bladder’ can result in a false negative result
- Significant technical expertise is required and the clinician involved should be properly trained in study performance, troubleshooting and interpretation.

How does urodynamics work?

The aim is to reproduce the patient’s symptoms and relate them to synchronous urodynamic events. Hence, continuous dialogue between the clinician and patient is necessary during the study. Insertion of a dual lumen catheter into the bladder via the urethra allows both fluid to be pumped in and vesical pressure to be measured. The bladder is filled at a fixed rate via the catheter and the patient voids around the catheter. The test is divided into different phases and allows measurement of several physiological pressures measured in centimetres of water (cm H₂O).

Pressure measures

Intravesical pressure (pves) is the pressure within the bladder and is measured by the bladder catheter. It is the sum of the pressure generated by the bladder (detrusor pressure pdet) and the intra-abdominal pressure (paab).

Abdominal pressure (paab) is measured by the rectal catheter.

Detrusor pressure (pdet) is the pressure generated by the bladder muscle. In ‘subtraction’ urodynamics (the commonest type) it is calculated electronically using the equation:

\[
\text{pdet} = \text{pves} - \text{pabd}.
\]

Phases of urodynamics

The filling phase assesses bladder sensation and presence of detrusor overactivity (an involuntary contraction of the detrusor muscle) as well as bladder compliance (the ability of the bladder to store urine at low pressures).

The voiding phase uses pressure-flow measurements to assess detrusor function and identify obstruction. Pressure flow nomograms can be used and a high pressure/low flow voiding pattern indicates obstruction in both genders. Urine flow rate is measured in mL/sec by a urine flowmeter.

Other measures

Bladder sensation is assessed by recording the volume at which the patient experiences:

- the first sensation of bladder fullness
- the first desire to void, and
- a strong desire to void and urgency.

Other optional measurements may be made during cystometry. These include bladder volume,
Urodynamics is unable to void during the study or if the patient's symptoms are not reproduced during the study.

What are the next steps?
Management varies with diagnosis. Guidelines for the assessment and management of adult urinary incontinence and lower urinary tract dysfunction are available at www.uroweb.org/guidelines/online–guidelines/.

Author
Karen Mc Kertich MBBS, FRACS(Urol), Australian Urology Associates, Cabrini Medical Centre and The Alfred Hospital, Melbourne, Victoria. reception@aua.com.au.

Conflict of interest: none declared.

What do the results mean?
The results must be interpreted in the clinical context. Three common scenarios are:

- assessment of a female patient before invasive surgery for incontinence helps:
 - confirm urinary incontinence, its cause and severity (e.g. stress incontinence, detrusor overactivity or mixed incontinence)
 - assess detrusor voiding function
 - assess degree of sphincter weakness
 - assess pelvic floor function
- assessment of lower urinary tract symptoms in men allows a diagnosis of:
 - detrusor overactivity (and defines whether it is a primary problem or secondary to obstruction)
 - bladder outlet obstruction (Figure 1) — cause and severity
 - detrusor underactivity
 - incontinence postsurgery — cause and severity
- assessment of patients with neurological disorders in whom other disorders exist such as:
 - neurogenic detrusor overactivity
 - functional bladder outlet obstruction due to urethral overactivity (e.g. due to detrusor-sphincter dyssynergia)
 - poor bladder compliance (or elasticity).

What can’t urodynamics diagnose?
Urodynamic studies do not give information about bladder mucosal pathology such as bladder tumour. Interpretation may be limited if the patient is unable to void during the study or if the patient’s symptoms are not reproduced during the study.