General practice antibiotic prescribing for management of otitis media in children

Joan Henderson, Lisa Valenti, Graeme C Miller

Otitis media (OM) is one of the most common infections in children. The cause can be viral, but is most often bacterial. It remains one of the most common reasons for antibiotic prescribing for children. Many episodes of acute OM are self-limiting and resolve without treatment, but antibiotics are often prescribed because these infections can develop into serious, sometimes life-threatening complications.

Recently, given increasing concerns about antibiotic resistance and the potential for adverse effects, a ‘wait and see’ approach was recommended. This advises observation and analgesia for the initial 24–48 hours, with an antibiotic prescription given to fill if symptoms worsen or do not improve over that time – a practice shown to significantly reduce antibiotic use.

In this study we investigated the management rate of OM in children (<15 years) attending Australian general practice, the prescribing rate of antibiotics for OM, and changes in these rates over the 12 years to March 2015.

Method
We analysed general practitioner (GP)–patient encounters with patients aged <15 years, recorded in the Bettering the Evaluation and Care of Health (BEACH) program from April 2003 to March 2015 (detailed methods described elsewhere). Encounters with patients with a diagnosis/problem label of ‘otitis media’ were included to estimate management rates and rates of antibiotic prescribing per 100 OM problems. Changes over time were examined using three data periods: April 2003 to March 2007; April 2007 to March 2011; and April 2011 to March 2015. National estimates of OM encounters were extrapolated from Medicare Benefits Schedule (MBS) claims data (full methods described elsewhere). Population estimates were calculated using Australian Bureau of Statistics demographic data. Rates are reported with robust 95% confidence intervals. Antibiotics include antibacterial agents (excluding anti-mycobacterial agents) commonly given orally or parenterally for systemic use.

BEACH is approved by the Human Research Ethics Committee of the University of Sydney (Ref:2012/130, valid to 31/3/18).

Results
Recorded were 135,226 encounters with patients aged <15 years, recorded in the Bettering the Evaluation and Care of Health (BEACH) program from April 2003 to March 2015 (detailed methods described elsewhere). Encounters with patients with a diagnosis/problem label of ‘otitis media’ were included to estimate management rates and rates of antibiotic prescribing per 100 OM problems. Changes over time were examined using three data periods: April 2003 to March 2007; April 2007 to March 2011; and April 2011 to March 2015. National estimates of OM encounters were extrapolated from Medicare Benefits Schedule (MBS) claims data (full methods described elsewhere). Rates are reported with robust 95% confidence intervals. Antibiotics include antibacterial agents (excluding anti-mycobacterial agents) commonly given orally or parenterally for systemic use.

BEACH is approved by the Human Research Ethics Committee of the University of Sydney (Ref:2012/130, valid to 31/3/18).

Results
Recorded were 135,226 encounters with patients aged <15 years, recorded in the Bettering the Evaluation and Care of Health (BEACH) program from April 2003 to March 2015 (detailed methods described elsewhere). Encounters with patients with a diagnosis/problem label of ‘otitis media’ were included to estimate management rates and rates of antibiotic prescribing per 100 OM problems. Changes over time were examined using three data periods: April 2003 to March 2007; April 2007 to March 2011; and April 2011 to March 2015. National estimates of OM encounters were extrapolated from Medicare Benefits Schedule (MBS) claims data (full methods described elsewhere). Rates are reported with robust 95% confidence intervals. Antibiotics include antibacterial agents (excluding anti-mycobacterial agents) commonly given orally or parenterally for systemic use.

BEACH is approved by the Human Research Ethics Committee of the University of Sydney (Ref:2012/130, valid to 31/3/18).

Discussion
The management rate of OM in children aged <15 years decreased slightly over the 12 years of this study. The change was small (detected at two decimal places) and although statistically significant, may not have any significant public health impact.

For children aged <15 years, antibiotics were prescribed on four out of five OM management occasions, and the prescribing
rate decreased, influenced mainly by a fall in prescribing rate for children aged 1–4 years.

In the longer term, however, there appears to have been no real change over the past 25 years. The 2011–15 result did not differ significantly from the antibiotic prescribing rate for OM (77.6; 95% CI: 74.9–80.2) reported in the Australian Morbidity and Treatment Survey (AMTS) 1990–1991 (method comparable to BEACH), or from the BEACH result for 1998–2000 of 77.5 (75.6–79.4). The 2003–07 rate was higher than the rates for these earlier time points but again, although statistically significant, does not appear to have had any real impact in the long term.

Potentially of public health significance is the estimated 5.6% increase in actual numbers of prescriptions for antibiotics for the management of OM. Over the study period the proportion of children aged <15 years in the Australian population decreased by one percentage point but in terms of actual persons, increased by approximately 350,000. An associated increase in the GP attendance rate led to an increase in GP consultations. While the management rate of OM decreased slightly, the number of encounters where OM was managed, and the number of antibiotics prescribed, increased. Per 100 children in the population, however, the estimated rate of OM managed with an antibiotic did not change over the study period.

The provision of antibiotics for OM may be patient/parent driven and for a variety of reasons – children in pain, parental expectation and belief that pain management alone is insufficient. Information and education about the implications of antibiotic use can alter some of these behaviours and expectations. A German study found that antibiotics for children with OM are prescribed about three times more often than expected by their parents. In older international studies, the ‘wait and see’ scenario resulted in a reduction of actual antibiotic use (24% and 44% of patients/parents provided prescriptions).

Table 1. Management of otitis media (OM) and antibiotic prescribing (95% CIs) for OM in patients <15 years 2003–07 to 2011–15

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of encounters with children in BEACH</td>
<td>45,283</td>
<td>45,295</td>
<td>44,648</td>
</tr>
<tr>
<td>Proportion of BEACH encounters where OM was managed</td>
<td>6.98% (6.08–7.28)§</td>
<td>6.56% (6.28–6.85)</td>
<td>6.37% (6.08–6.67)§</td>
</tr>
<tr>
<td>Annual number of MBS encounters with children</td>
<td>13,902,035</td>
<td>15,739,162</td>
<td>16,820,448</td>
</tr>
<tr>
<td>Number of children <15 years in Australian population (ABS)</td>
<td>(June 2005)</td>
<td>(June 2009)</td>
<td>(June 2013)</td>
</tr>
<tr>
<td>Number of BEACH encounters with OM managed for children with 1+ prescribed antibiotic</td>
<td>3,160</td>
<td>2,973</td>
<td>2,845</td>
</tr>
<tr>
<td>Proportion of BEACH encounters with OM managed for children with 1+ prescribed antibiotic</td>
<td>83.7 (82.2–85.1)§</td>
<td>81.8 (80.2–83.3)</td>
<td>79.7 (78.0–81.4)§</td>
</tr>
<tr>
<td>Number of children managed with antibiotics per 100 children in Australian population (ABS)</td>
<td>(23.1–25.2)</td>
<td>(23.6–25.8)</td>
<td>(23.4–25.7)</td>
</tr>
<tr>
<td>Number of BEACH encounters with OM managed for children with 1+ prescribed antibiotic</td>
<td>810,000</td>
<td>845,000</td>
<td>855,000</td>
</tr>
<tr>
<td>Proportion of BEACH encounters with OM managed for children with 1+ prescribed antibiotic</td>
<td>20.2 (19.8–20.5)</td>
<td>20.2 (19.8–20.6)</td>
<td>19.5 (19.1–20.0)</td>
</tr>
</tbody>
</table>

*Estimated using Medicare Benefits Schedule statistics for the third year of each four-year period

†Estimated using Australian Bureau of Statistics Australian demographic statistics

§Rounded to the nearest 5000

© The Royal Australian College of General Practitioners 2016
The strength of representative BEACH data is the direct link between the problem label and the specific management, a benefit lacking in most other data sources. However, a limitation is that we are unable to determine the proportion of these prescriptions that were provided on the ‘wait and see’ basis, or the proportion that were filled.

Currently in Australia, there are no answers to these questions, as Pharmaceutical Benefits Scheme and pharmacy data do not have access to the reason for (any) prescription when it is dispensed, and can provide no information about antibiotic prescriptions that were not filled. Most patient electronic health records neither link prescriptions with managed problems, nor record whether a prescription was filled.

Our results show that Australian GPs prefer to prescribe antibiotics for children with OM – perhaps because OM is most commonly bacterial in cause, the potential complications are often serious,1 complications where antibiotics were not prescribed may result in litigation,14 and antibiotics may provide more immediate symptom relief.3 An element of parent expectation is also likely, and many of these prescriptions may well be provided on a ‘wait and see’ basis.

For the past 25 years, the ‘normal’ behaviour of Australian GPs has been to prescribe antibiotics for the management of OM in children. Presumably, GPs perceive a patient benefit that outweighs the risk and cost associated with antibiotic therapy. It appears a more convincing argument is required to shift the ‘normal’ GP therapeutic approach to OM.

Authors
Joan Henderson BAppSc (HIM) (Hons 1), PhD, Senior Research Fellow, BEACH program, Family Medicine Research Centre, Sydney School of Public Health, Sydney Medical School, University of Sydney, Parramatta, NSW.

Lisa Valenti BSc, MMedStat, Senior Research Analyst, BEACH program, Family Medicine Research Centre, Sydney School of Public Health, Sydney Medical School, University of Sydney, Parramatta, NSW.

Graeme C Miller MBBS, PhD, FRACGP, Associate Professor and Medical Director, Family Medicine Research Centre, Sydney School of Public Health, Sydney Medical School, University of Sydney, Parramatta, NSW.

Competing interests: None.

Provenance and peer review: Commissioned, externally peer reviewed.

Acknowledgements
We wish to thank the general practitioners who participated for their generosity. During the data collection period of this study, the BEACH program was funded by the Australian Government Department of Health, AstraZeneca Pty Ltd (Australia), Novartis Pharmaceuticals Australia Pty Ltd, bioCSL (Australia) Pty Ltd, AbbVie Pty Ltd, Merck Sharp & Dohme (Australia) Pty Ltd, Pfizer Australia Pty Ltd, GlaxoSmithKline Australia Pty Ltd, Sanofi-Aventis Australia Pty Ltd, Bayer Australia Ltd, Janssen-Cilag Pty Ltd, Abbott Australasia Pty Ltd, Roche Products Pty Ltd, the National Prescribing Service Ltd.

References