Elevated serum ferritin
What should GPs know?

Katie Goot
Simon Hazeldine
Peter Bentley
John Olynyk
Darrell Crawford

Background
Elevated serum ferritin is commonly encountered in general practice. Ninety percent of elevated serum ferritin is due to non-iron overload conditions, where venesection therapy is not the treatment of choice.

Objective
This article aims to outline the role of the Australian Red Cross Blood Service Therapeutic Venesection program, to clarify the interpretation of the HFE gene test and iron studies, and to describe the steps in evaluating a patient with elevated serum ferritin.

Discussion
After exclusion of hereditary haemochromatosis, investigation of elevated serum ferritin involves identifying alcohol consumption, metabolic syndrome, obesity, diabetes, liver disease, malignancy, infection or inflammation as causative factors. Referral to a gastroenterologist, haematologist or physician with an interest in iron overload is appropriate if serum ferritin is >1000 µg/L or if the cause of elevated serum ferritin is still unclear.

Keywords
haemochromatosis; venesection; iron

The Australian Red Cross Blood Service has experienced a growing number of referrals from general practitioners for therapeutic venesection for patients with elevated serum ferritin (SF) who do not meet the eligibility criteria of two HFE mutations or documented iron overload. Thirty-six percent of referrals to the Australian Red Cross Blood Service Therapeutic Venesection program in an 8 month period in 2011 were for patients with elevated SF who do not meet eligibility criteria for therapeutic venesection.

Table 1. Eligibility criteria for Australian Red Cross Blood Service Therapeutic Venesection program

- Evidence of hereditary haemochromatosis:
 - C282Y homozygosity
 - C282Y/H63D compound heterozygosity
- Clinical iron overload supported by FerriScan® MRI or liver biopsy
- Polycythaemia rubra vera
- Porphyria cutanea tarda
Iron metabolism
Approximately 75% of the body's 3–4 g total iron is found within haemoglobin in red blood cells, 10–20% is stored in the protein ferritin and the remainder is found in the iron transport protein transferrin, as well as in myoglobin, cytochromes and as unbound serum iron. Synthesised by the liver, the hormone hepcidin regulates total body iron levels by controlling intestinal iron absorption. Under the strict control of hepcidin, daily iron losses of 1–2 mg from dietary sources. Only 10% of daily dietary iron absorption is absorbed. In HH, total body iron stores can be calculated from the volume of blood removed during weekly venesections. Removal of 4 g or more of iron (16 weekly venesections) without developing iron deficiency anaemia indicates iron overload.

Hereditary haemochromatosis
Hereditary haemochromatosis is an autosomal recessive condition of progressive iron overload, usually due to homozygosity for the C282Y mutation in the HFE gene. This mutation causes inappropriately increased intestinal iron absorption at a rate 2–3 times greater than normal. Similar to type 1 diabetes being a metabolic condition of glucose homeostasis due to insulin deficiency, HH is a metabolic condition of iron homeostasis due to hepcidin deficiency. Approximately 1 in 200 people of Caucasian race are homozygous for the C282Y mutation. This mutation has much higher penetrance than the H63D mutation. C282Y homozygotes are at highest risk of developing total body iron overload whereas C282Y/H63D compound heterozygotes have much lower risk. Even if H63D homozygotes develop elevated serum iron indices, they are unlikely to develop total body iron overload. C282Y homozygosity confers risk of the multi-organ consequences of iron overload, including liver fibrosis, liver cirrhosis, hepatocellular carcinoma, cardiac arrhythmias, cardiomyopathy, diabetes, arthropathy, hypogonadism and skin hyperpigmentation. Organ damage can be averted with early diagnosis and appropriate venesection therapy, but this is challenging due to the variable, subtle and nonspecific symptoms in early disease.

Whereas the HFE gene test indicates the risk of eventually developing iron overload, iron studies indicate if iron overload is currently present. The HFE gene test is performed once, whereas iron studies are performed every time an assessment of current iron overload is required (Table 3). A typical schedule of venesections for a patient with HH and iron overload is presented in Table 4.

Iron overload
The human body lacks an iron excretion mechanism. Table 2 outlines circumstances in which iron overload can develop.

Assessment of iron overload relies on surrogate markers, including tests (transferrin saturation, serum ferritin), noninvasive magnetic resonance imaging (MRI) scans for hepatic iron concentration (FerriScan®), liver biopsy and serum iron indices, they are unlikely to develop total body iron overload. The most useful tests in the evaluation of iron overload due to HH are transferrin saturation and serum ferritin. Transferrin saturation >45% is sensitive and fairly specific for diagnosing HH, with increasing specificity when the threshold is increased to >55%. Serum ferritin is most useful in monitoring venesection requirement and venesection response in patients already diagnosed with HH.

Serum ferritin
While low SF is a sensitive and specific indicator of low total body iron stores, elevated SF is sensitive but very nonspecific for iron overload. While a normal SF rules out iron overload (Figure 1). Chronic alcohol consumption, metabolic syndrome, obesity, diabetes, malignancy, infection and inflammatory conditions explain 90% of causes of elevated SF. Elevations of SF in the range 300–1000 µg/L are common, and often reflect the presence of the previously listed conditions. Mild elevations below 1000 µg/L are “tolerable” and in the absence of HH, the risk of hepatic iron overload is exceedingly low. Australian studies have shown a link between alcohol consumption and elevated SF, with beer more so than spirits or wine causing increases.

Table 2: Causes of iron overload

<table>
<thead>
<tr>
<th>Mechanism of iron overload</th>
<th>Example</th>
</tr>
</thead>
</table>
| Inappropriately increased intestinal iron absorption | • Hereditary haemochromatosis
• HFE-haemochromatosis
 - Type 1: HFE mutation (HFE gene)
 - Non-HFE haemochromatosis (rare)
 - type 2A: haemojuvetin mutation (HJV gene)
 - type 2B: hepcidin mutation (HAMP gene)
 - type 3: transferrin receptor 2 mutation (TfR2 gene)
 - type 4: ferroportin mutation (FPN1 gene) |
| Transfusional iron overload 1 unit packed red cells ~250 mg iron | • Multiple transfusions to treat anaemia due to:
 - red cell aplasia (congenital or acquired)
 - haemoglobinopathies
 - myelodysplastic syndrome, leukaemia
 - cancer or chemotherapy for cancer
 - severe haemorrhage in haemophilia/surgery/trauma |
| Iron-loading anaemias | • α-thalassaemia
• β-thalassaemia
• Chronic haemolytic anaemias
• Congenital sideroblastic anaemia
• Congenital dyserythropoietic anaemia |
| Hepatocellular chronic liver disease | • Alcoholic liver disease
• Hepatitis B or C
• Nonalcoholic steatohepatitis |
| Excess parenteral iron | • Excess IM or IV iron |
Elevated serum ferritin – what should GPs know?

in ferritin secretion by the liver. Chronic daily consumption of two or more standard drinks might explain elevated SF. Repeat SF testing after a period of alcohol abstinence can clarify the contribution of a patient’s alcohol intake on their elevated SF.

Table 3. Advice based on HFE genotype and serum ferritin

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Prevalence in Caucasian Australians</th>
<th>Advice if serum ferritin is normal</th>
<th>Advice if serum ferritin is elevated</th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk HFE genotypes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C282Y homozygous</td>
<td>1 in 188</td>
<td>• Increased risk of future iron overload</td>
<td>• Begin venesections – candidate for therapeutic venesection</td>
</tr>
<tr>
<td>C282Y/H63D compound heterozygous</td>
<td>1 in 46</td>
<td>• Check iron studies every 1–5 years</td>
<td>• Family members need testing</td>
</tr>
<tr>
<td>C282Y carrier</td>
<td>1 in 8</td>
<td>• Family members need testing</td>
<td>• SF >1000 µg/L: refer to gastroenterologist, haematologist or physician with an interest in iron overload</td>
</tr>
<tr>
<td>H63D homozygous</td>
<td>1 in 49</td>
<td>• Check iron studies every 1–5 years</td>
<td>• Not a candidate for therapeutic venesection but can become a volunteer blood donor if no contraindications exist</td>
</tr>
<tr>
<td>C282Y carrier</td>
<td>1 in 4</td>
<td>• No further follow up needed</td>
<td>• Look for another cause of elevated SF apart from HH, especially alcohol consumption, metabolic syndrome, obesity, liver disease and inflammation</td>
</tr>
<tr>
<td>H63D carrier</td>
<td>1 in 4</td>
<td>• No further follow up needed</td>
<td>• Consider non-HFE haemochromatosis</td>
</tr>
<tr>
<td>No mutations</td>
<td>3 in 5</td>
<td>• No further follow up needed</td>
<td>• SF >1000 µg/L: refer to gastroenterologist, haematologist or physician with an interest in iron overload</td>
</tr>
</tbody>
</table>

Table 4. Venesection schedule

<table>
<thead>
<tr>
<th>Iron unloading phase, target serum ferritin ~50 µg/L</th>
<th>Abnormal values (vary from laboratory-to-laboratory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Weekly venesection of ~7 mL/kg (maximum 550 mL) whole blood</td>
<td>Suggestive of low iron stores</td>
</tr>
<tr>
<td>• Ensure pre-venesection haemoglobin >120 g/L</td>
<td>• Serum iron</td>
</tr>
<tr>
<td>• Monitor Hb and SF</td>
<td>• Total iron binding capacity</td>
</tr>
<tr>
<td>– Hb: is it safe to remove more blood? Delay for 1 week if pre-venesection Hb <120 g/L</td>
<td>• Transferrin saturation</td>
</tr>
<tr>
<td>– SF: is it safe to remove more iron? Monitor SF every 4–6 venesections, more often as SF approaches 100 µg/L</td>
<td>• Serum ferritin</td>
</tr>
<tr>
<td>• It may take many months or even years to unload excess iron</td>
<td></td>
</tr>
<tr>
<td>• Oral vitamin B12 and folate supplements support erythropoiesis during frequent venesections</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Interpretation of iron studies

<table>
<thead>
<tr>
<th>Iron study test name</th>
<th>Explanation</th>
<th>Iron as an analogy to money</th>
<th>Abnormal values (vary from laboratory-to-laboratory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum iron</td>
<td>Unbound serum iron</td>
<td>‘Loose change in your pocket’</td>
<td>Suggestive of low iron stores</td>
</tr>
<tr>
<td>Total iron binding capacity</td>
<td>Ability to bind even more iron</td>
<td>‘Greediness for more money’</td>
<td>>70 µmol/L</td>
</tr>
<tr>
<td>Transferrin saturation</td>
<td>Iron absorbed from duodenum bound to a transport protein</td>
<td>‘Money kept in your wallet’</td>
<td><16%</td>
</tr>
<tr>
<td>Serum ferritin</td>
<td>Iron within a storage protein</td>
<td>‘The savings you have in your bank’</td>
<td><30 µg/L</td>
</tr>
<tr>
<td></td>
<td>One molecule of ferritin binds 4500 atoms of iron</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
There exists a well-established link between elevated SF, metabolic syndrome and fatty liver.20,21 With the Australian prevalence of metabolic syndrome being 1 in 3,22 the high pre-test probability of ‘metabolic hyperferritinaemia’ is important to consider when evaluating patients with elevated SF. Features which may discriminate elevated SF due to HH from metabolic hyperferritinaemia are listed in Table 6.

Liver disease is a cause of elevated SF. Injured hepatocytes leak ferritin into the serum, so in liver disease, SF can be considered as another type of liver function test (LFT), along with the transaminases (alanine transaminase [ALT], aspartate aminotransferase [AST]) and gamma-glutamyl transferase (GGT). Some causes of liver disease are associated with increased hepatic iron concentration (hepatitis B, hepatitis C, alcoholic liver disease, HH) so elevated SF with abnormal LFTs usually requires further investigation.23

Malignancy, infection and inflammatory conditions may all cause elevated SF. Normal screening tests for C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and antinuclear antibody (ANA) can help exclude the presence of these conditions.

Specialist review is mandatory if SF exceeds 1000 µg/L due to the increased risk of fibrosis and cirrhosis above this threshold. However, in the absence of C282Y homozygosity, hepatic iron concentration is usually normal or only mildly elevated and fatty liver, hepatitis B, hepatitis C and alcoholic liver disease may be found.17,24

Key points
- Of all HFE genotypes, only C282Y homozygotes have a high risk of hepatic iron overload.
- Once HH has been excluded in a patient with elevated SF, assess for potential causes including chronic alcohol consumption, metabolic syndrome, obesity, diabetes, liver disease, malignancy, infection and inflammation.
- If SF >1000 µg/L refer to a gastroenterologist, haematologist or physician with an interest in iron overload.
- If SF <1000 µg/L address reversible causes and repeat iron studies.
- Encourage voluntary blood donation every 12 weeks.

Further information
- Australian Red Cross Blood Service App (which provides real-time processing of referrals and current information regarding patients who do not meet eligibility criteria): http://highferritin.transfusion.com.au
- Haemochromatosis Australia resources for GPs: www.haemochromatosis.org.au/GPResources.htm
- GESA haemochromatosis clinical practice guidelines:

Elevated serum ferritin

1. Repeat serum ferritin.
2. Asses history of iron supplements (oral, IM, IV), blood transfusions, anaemia.
3. Exclude iron loading anaemias (Hb, MCV, blood film).

Ferritin <1000 µg/L

- **HFE genotype**
 - Highest risk C282Y homozygous.
 - Lower risk C282Y/H63D compound heterozygous.

- **Alcohol intake**
 - >20 g daily.
 - <20 g daily.

- **Metabolic syndrome, obesity or diabetes**
 - Absent.
 - Present.

- **Liver disease**
 - Eg. LFTs, HBsAg, HCV-Ab, ANA, AAT, copper, caeruloplasmin, liver ultrasound.

- **Malignancy, infection or inflammation**
 - Eg. ESR, CRP, ANA.

Ferritin >1000 µg/L

- **Hereditary haemochromatosis**
 - Suitable for blood service therapeutic venesection program.

- **Commence venesection**
 - Suitable for blood service therapeutic venesection program.

- **If no explanation is found, consider referral to gastroenterologist for assessment of hepatic iron (FerriScan® MRI or liver biopsy).**

- **Refer to specialist**
 - Gastroenterologist, haematologist or physician.

Figure 1. Algorithm for the investigation and management of elevated serum ferritin in general practice
Table 6. Comparison between elevated serum ferritin in haemochromatosis and in metabolic syndrome

<table>
<thead>
<tr>
<th>Feature</th>
<th>Elevated serum ferritin due to hereditary haemochromatosis</th>
<th>Metabolic hyperferritinaemia due to metabolic syndrome/fatty liver/insulin resistance/diabetes/obesity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype</td>
<td>C282Y homozygous</td>
<td>Not C282Y homozygous</td>
</tr>
<tr>
<td>Ancestry</td>
<td>Usually Caucasian</td>
<td>Variable</td>
</tr>
<tr>
<td>Transferrin saturation</td>
<td>Usually >45%</td>
<td>Usually normal (20–45%)</td>
</tr>
<tr>
<td>Serum ferritin</td>
<td>Elevated</td>
<td>Elevated</td>
</tr>
<tr>
<td>C-reactive protein</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Hepcidin levels (not commercially available)</td>
<td>Reduced hepcidin levels</td>
<td>Normal or elevated hepcidin levels</td>
</tr>
<tr>
<td>Serum ferritin over time</td>
<td>Progressively more elevated</td>
<td>Fluctuations from one test to another</td>
</tr>
<tr>
<td>Total body iron levels</td>
<td>Raised</td>
<td>Normal</td>
</tr>
<tr>
<td>Response to weekly 500 mL venesections</td>
<td>Patient tolerates >16 weekly venesections</td>
<td>Patient becomes anaemic after <16 weekly venesections</td>
</tr>
<tr>
<td>Hepatic iron concentration</td>
<td>Raised</td>
<td>Normal</td>
</tr>
<tr>
<td>(FerriScan® MRI or liver biopsy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pattern of iron deposition on liver biopsy</td>
<td>Parenchymal deposition in hepatocytes</td>
<td>Nonparenchymal deposition in sinusoidal and Kupffer cells</td>
</tr>
<tr>
<td>Management</td>
<td>Iron depletion</td>
<td>Lifestyle modifications</td>
</tr>
<tr>
<td></td>
<td>– venesections</td>
<td>– weight control</td>
</tr>
<tr>
<td></td>
<td>– iron chelation therapy</td>
<td>– correction of insulin resistance</td>
</tr>
</tbody>
</table>

• FerriScan®: www.resonancehealth.com.

Authors
Katie Goot MBBS, BSc, is an ACRM registrar, Biloela, Queensland and GPET academic regis-
trar, UQ Rural Clinical School, Rockhampton, Queensland. k.goot@uq.edu.au
Simon Hazeldine MBBS, BSc, MRCP, is Senior
Clinical Fellow, Department of Gastroenterology, Fremantle Hospital, Fremantle, Western Australia
Peter Bentley MBBS, MBA, is Manager, Medical Services (WA), Australian Red Cross Blood Service, Perth, Western Australia
John Olynyk BMedSc, MBBS, FRACP, MD, is
Director, Department of Gastroenterology, Fremantle Hospital, Fremantle, Western Australia
Darrell Crawford MBBS, FRACP, MD, is Head, Discipline of Medicine, University of Queensland
School of Medicine, Brisbane, Queensland.
Conflict of interest: none declared.

Acknowledgements
The authors thank Dr Barbara Bell, National Medical Services Manager, Australian Red Cross Blood
Service for her assistance in providing referral data. Australian governments fully fund the Australian
Red Cross Blood Service for the provision of blood products and services to the Australian community.

References
1. Bell B. Australian Red Cross Blood Service Referrals Database. National Office, 17 O’Riordan Street
Alexandria NSW [Accessed 20 April 2012]
2. Beaton MD, Adams PC. Treatment of hyperferritine-
-risk after iron reduction in patients with
-peripheral arterial disease: results from a randomized
- phlebotomy-induced reduction of body iron stores
-on metabolic syndrome: results from a randomized
-for non-alcoholic fatty liver disease unresponsive
to lifestyle counselling: a propensity score-adjusted
observational study. QJM 2011;104:141–9.
6. Adams PC, Barton JC. A diagnostic approach to
-hyperferritinaemia with a non-elevated transferrin
-hepcidin regulation in HFE-associated haemo-
chromatosis and the liver as a regulator of body iron
8. Allen K. Hereditary haemochromatosis – diagnosis
9. Pietrangelo A. Hemochromatosis: an endocrine liver
-H63D compound heterozygotes are at low risk of
-hemochromatosis-related morbidity. Hepatology 2009;
11. Gochee PA, Powell LW, Cullen DJ, Du Sart D, Rossi
E, Olynyk JK. A population-based study of the
-biochemical and clinical expression of the H63D
hemochromatosis mutation. Gastroenterology
12. Olynyk JK, Cullen DJ, Aquilia S, Rossi E, Summerville
L, Powell LW. A population-based study of the
clinical expression of the hemochromatosis gene. N Engl J
Hemochromatosis for health care professionals.
Available at www.cdc.gov/nccdphp/dnpa/hemochromatosis/
training/pdf/hemochromatosis_course.pdf [Accessed
11 July 2012].
14. Dale JC, Burritt MF, Zinsmeister AR. Diurnal varia-
tion of serum iron, iron-binding capacity, transferrin
saturation, and ferritin levels. Am J Clin Pathol
15. EASL clinical practice guidelines for HFE hemochro-
16. St John AT, Stuart KA, Crawford DHG. Testing for
HFE-related haemochromatosis. Australian Prescriber
2011;34:73–6.
17. Olynyk JK, Gan E, Tan T. Predicting iron overload
-in hyperferritinemia. Clin Gastroenterol Hepatol
18. Leggett BA, Brown NN, Bryant SJ, Duplock L, Powell
LW, Halliday JW. Factors affecting the concentrations
of ferritin in serum in a healthy Australian population.
19. Rossi E, Bulsara MK, Olynyk JK, Cullen DJ,
Summerville L, Powell LW. Effect of hemochroma-
tosis genotype and lifestyle factors on iron and red
cell indices in a community population. Clin Chem
-Hyperferritinaemia is associated with insulin resist-
ance and fatty liver in patients without iron overload.
21. Trombini P, Piperno A. Ferritin, metabolic syndrome
and NARFD: elective attractions and dangerous liais-
22. Chew GT, Gan SK, Watts GF. Revisiting the metabolic
23. Pietrangelo A. Iron in NASH, chronic liver diseases
and HCC. How much iron is too much? J Hepatol
24. Wong K, Adams PC. The diversity of liver diseases
among outpatient referrals for an elevated serum fer-
ritin. Can J Gastroenterol 2008;20:467–70.

correspondence afp@racgp.org.au

Reprinted from AUSTRALIAN FAMILY PHYSICIAN VOL. 41, NO. 12, DECEMBER 2012 949